Sunday, March 30, 2025

27. Remove Element Easy

Given an integer array nums and an integer val, remove all occurrences of val in nums in-place. The order of the elements may be changed. Then return the number of elements in nums which are not equal to val.

Consider the number of elements in nums which are not equal to val be k, to get accepted, you need to do the following things:

  • Change the array nums such that the first k elements of nums contain the elements which are not equal to val. The remaining elements of nums are not important as well as the size of nums.
  • Return k.

Custom Judge:

The judge will test your solution with the following code:

int[] nums = [...]; // Input array
int val = ...; // Value to remove
int[] expectedNums = [...]; // The expected answer with correct length.
                            // It is sorted with no values equaling val.

int k = removeElement(nums, val); // Calls your implementation

assert k == expectedNums.length;
sort(nums, 0, k); // Sort the first k elements of nums
for (int i = 0; i < actualLength; i++) {
    assert nums[i] == expectedNums[i];
}

If all assertions pass, then your solution will be accepted.

 

Example 1:

Input: nums = [3,2,2,3], val = 3
Output: 2, nums = [2,2,_,_]
Explanation: Your function should return k = 2, with the first two elements of nums being 2.
It does not matter what you leave beyond the returned k (hence they are underscores).

Example 2:

Input: nums = [0,1,2,2,3,0,4,2], val = 2
Output: 5, nums = [0,1,4,0,3,_,_,_]
Explanation: Your function should return k = 5, with the first five elements of nums containing 0, 0, 1, 3, and 4.
Note that the five elements can be returned in any order.
It does not matter what you leave beyond the returned k (hence they are underscores).

 

Constraints:

  • 0 <= nums.length <= 100
  • 0 <= nums[i] <= 50
  • 0 <= val <= 100


A:

就是挨个拷贝过去

class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int idx = 0;
for(auto num : nums){
if(num != val){
nums[idx++] = num;
}
}
return idx;
}

}; 


Saturday, March 29, 2025

968. Binary Tree Cameras (hard)

 You are given the root of a binary tree. We install cameras on the tree nodes where each camera at a node can monitor its parent, itself, and its immediate children.

Return the minimum number of cameras needed to monitor all nodes of the tree.

 

Example 1:

Input: root = [0,0,null,0,0]
Output: 1
Explanation: One camera is enough to monitor all nodes if placed as shown.

Example 2:

Input: root = [0,0,null,0,null,0,null,null,0]
Output: 2
Explanation: At least two cameras are needed to monitor all nodes of the tree. The above image shows one of the valid configurations of camera placement.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • Node.val == 0

A:

就是每个node, 看是否用了,  如果用了。就跳到


/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minCameraCover(TreeNode* root) {
M[nullptr] = 0;
return min(noPlaceOnRoot(root), placeOnRoot(root));
}
private:
int noPlaceOnRoot(TreeNode* root){
if(!root)
return 0;
if(!root->left && ! root->right) // no child, impossible
return INT_MAX;
if(!root->left){
return placeOnRoot(root->right);
}else if(!root->right){
return placeOnRoot(root->left);
}else{ // both are not null
int useLeftChild = placeOnRoot(root->left) + minCameraCover(root->right);
int useRightChild = placeOnRoot(root->right) + minCameraCover(root->left);
return min(useLeftChild, useRightChild);
}
}
// if root is placed a camera,
int placeOnRoot(TreeNode* root){
if(!root)
return INT_MAX;
if(M.find(root) != M.end()){
return M.find(root)->second;
}
int l = 0, r = 0;
if(root->left)
l = minCameraCover(root->left->left) + minCameraCover(root->left->right);
if(root->right)
r= minCameraCover(root->right->left) + minCameraCover(root->right->right);
M[root] = 1 + l + r;
return M[root];
}
//the minimum # of cameras in binary tree if placed at root
unordered_map<TreeNode*, int> M; // insert nullptr, to avoid checking
};


NOTE:  这里,LC的test case感觉是错的

[0,null,0,null,0,null,0,null,0,0,0,null,null,0,0]

我的输出是4, 他说expect 3. 但是我画了图,感觉4 才对



Friday, March 28, 2025

652. Find Duplicate Subtrees --- M

Given the root of a binary tree, return all duplicate subtrees.

For each kind of duplicate subtrees, you only need to return the root node of any one of them.

Two trees are duplicate if they have the same structure with the same node values.

 

Example 1:

Input: root = [1,2,3,4,null,2,4,null,null,4]
Output: [[2,4],[4]]

Example 2:

Input: root = [2,1,1]
Output: [[1]]

Example 3:

Input: root = [2,2,2,3,null,3,null]
Output: [[2,3],[3]]

 

Constraints:

  • The number of the nodes in the tree will be in the range [1, 5000]
  • -200 <= Node.val <= 200

A:

错误的解法

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<TreeNode*> findDuplicateSubtrees(TreeNode* root) {
unordered_set<string> S;
unordered_map<string, TreeNode*> map;
helper(root, S, map);
vector<TreeNode*> res;
for(auto p : map){
res.push_back(p.second);
}
return res;
}
private:
string helper(TreeNode* root, unordered_set<string>& S, unordered_map<string, TreeNode*> &map){
if(!root)
return "";
auto l = helper(root->left, S, map);
auto r = helper(root->right,S, map);
auto node = l+"-"+to_string(root->val)+"-"+r;
if(S.find(node) != S.end()){
map[node] = root;
}else{
S.insert(node);
}
return node;
}
};

上述错误的原因是: 基于 inorder的表示方法。 string方法不唯一。
Given. [0,0,0,0,null,null,0,null,null,null,0]

上面的算法会算出: [[0,null,0],[0]]
而正确答案是 [[0]]


而正确的做法只需要改一行
auto node = "("+l+")"+to_string(root->val)+"("+r + ")";