Tuesday, August 11, 2020

886. Possible Bipartition ---M

Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone into two groups of any size.

Each person may dislike some other people, and they should not go into the same group. 

Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.

Return true if and only if it is possible to split everyone into two groups in this way.

 

    Example 1:

    Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
    Output: true
    Explanation: group1 [1,4], group2 [2,3]
    

    Example 2:

    Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
    Output: false
    

    Example 3:

    Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
    Output: false
    

     

    Constraints:

    • 1 <= N <= 2000
    • 0 <= dislikes.length <= 10000
    • dislikes[i].length == 2
    • 1 <= dislikes[i][j] <= N
    • dislikes[i][0] < dislikes[i][1]
    • There does not exist i != j for which dislikes[i] == dislikes[j].

     A:

    ----------BFS---------  用queue

    class Solution {
    public:
        bool possibleBipartition(int N, vector<vector<int>>& dislikes) {
            vector<int> V(N+1, -1); // -1 undecided, 0, one color, 1 another
            unordered_map<int, vector<int>> M;
            for(auto dis : dislikes){            
                int a = dis[0];
                int b = dis[1];
                M[a].push_back(b);
                M[b].push_back(a);
            }
            
            for(int i =1;i<=N; i++){
                if(V[i] >=0 )
                    continue;
                queue<int> Q;
                V[i] = 0;
                Q.push(i);
                while(!Q.empty()){
                   int a = Q.front();
                    Q.pop();
                    for(auto end : M[a]){
                        if(V[end]==V[a]){
                            return false;
                        }else if(V[end]==-1){
                            V[end] = 1-V[a];
                            Q.push(end);
                        }
                    }
                }
            }
            return true;
        }
    };





    No comments:

    Post a Comment