In a deck of cards, each card has an integer written on it.
Return true
if and only if you can choose X >= 2
such that it is possible to split the entire deck into 1 or more groups of cards, where:
- Each group has exactly
X
cards. - All the cards in each group have the same integer.
Example 1:
Input: deck = [1,2,3,4,4,3,2,1] Output: true Explanation: Possible partition [1,1],[2,2],[3,3],[4,4].
Example 2:
Input: deck = [1,1,1,2,2,2,3,3] Output: false´ Explanation: No possible partition.
Example 3:
Input: deck = [1] Output: false Explanation: No possible partition.
Example 4:
Input: deck = [1,1] Output: true Explanation: Possible partition [1,1].
Example 5:
Input: deck = [1,1,2,2,2,2] Output: true Explanation: Possible partition [1,1],[2,2],[2,2].
Constraints:
1 <= deck.length <= 10^4
0 <= deck[i] < 10^4
A:
class Solution { public: bool hasGroupsSizeX(vector<int>& deck) { if(deck.size()==0) return true; unordered_map<int,int> M; for(auto v : deck){ M[v]+=1; } vector<int> V; auto iter = M.begin(); while(iter!= M.end()){ V.push_back(iter->second); iter++; } int minV = *min_element(V.begin(), V.end()); for(int X =2; X<= minV; X++){ bool someOneCannotDevide = false; for(auto k : V){ if(k%X!=0){ someOneCannotDevide = true; break; } } if(!someOneCannotDevide){ return true; } } return false; } };
一开始没有看明白题意。 不知道 X 是个未知数。
No comments:
Post a Comment