You are given a network of n
nodes, labeled from 1
to n
. You are also given times
, a list of travel times as directed edges times[i] = (ui, vi, wi)
, where ui
is the source node, vi
is the target node, and wi
is the time it takes for a signal to travel from source to target.
We will send a signal from a given node k
. Return the minimum time it takes for all the n
nodes to receive the signal. If it is impossible for all the n
nodes to receive the signal, return -1
.
Example 1:

Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2 Output: 2
Example 2:
Input: times = [[1,2,1]], n = 2, k = 1 Output: 1
Example 3:
Input: times = [[1,2,1]], n = 2, k = 2 Output: -1
Constraints:
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
- All the pairs
(ui, vi)
are unique. (i.e., no multiple edges.)
A:
Dijkstra's Algorithm
class Solution {
public:
int networkDelayTime(vector<vector<int>>& times, int n, int k) {
// Dijkstra algorithm
vector<bool> visited(n+1, false);
vector<int> minDist(n+1, INT_MAX);
minDist[k] = 0;
unordered_map<int, vector<pair<int, int>>> Edges;
for(const auto & edge : times){// map edge by starting node
Edges[edge[0]].push_back({edge[1], edge[2]});
}
while(true){
// find the one with lowese distance
int curMinDist = INT_MAX;
int u = -1;
for(int i = 1 ; i <= n; i ++){
if(not visited[i] && minDist[i] < curMinDist){
curMinDist= minDist[i];
u = i;
}
}
if(curMinDist == INT_MAX)
break;
visited[u] = true;
// update minimum distance originating from u
for(const auto & p : Edges[u]){
int v = p.first, w = p.second;
if(not visited[v] && minDist[u] + w < minDist[v]){
minDist[v] = minDist[u] + w;
}
}
}
auto max_element_it = max_element(minDist.begin()+1, minDist.end());
return *max_element_it == INT_MAX? -1 : *max_element_it;
}
};
Mistakes:
node index的范围是1 到n。 我默认一开始还是写成了0 到 n-1。
No comments:
Post a Comment