Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
Implement the MinStack
class:
MinStack()
initializes the stack object.void push(int val)
pushes the elementval
onto the stack.void pop()
removes the element on the top of the stack.int top()
gets the top element of the stack.int getMin()
retrieves the minimum element in the stack.
You must implement a solution with O(1)
time complexity for each function.
Example 1:
Input ["MinStack","push","push","push","getMin","pop","top","getMin"] [[],[-2],[0],[-3],[],[],[],[]] Output [null,null,null,null,-3,null,0,-2] Explanation MinStack minStack = new MinStack(); minStack.push(-2); minStack.push(0); minStack.push(-3); minStack.getMin(); // return -3 minStack.pop(); minStack.top(); // return 0 minStack.getMin(); // return -2
Constraints:
-231 <= val <= 231 - 1
- Methods
pop
,top
andgetMin
operations will always be called on non-empty stacks. - At most
3 * 104
calls will be made topush
,pop
,top
, andgetMin
.
A:
思想很简单。后来出现memory out of limit, minStack中就没有存多余的最小值。
class MinStack { public: /** initialize your data structure here. */ vector<int> stack; vector<int> minStack; MinStack() { } void push(int x) { stack.push_back(x); if(minStack.empty() || minStack.back() > x) minStack.push_back(x); else minStack.push_back(minStack.back()); } void pop() { stack.pop_back(); minStack.pop_back(); } int top() { return stack.back(); } int getMin() { return minStack.back(); } }; /** * Your MinStack object will be instantiated and called as such: * MinStack* obj = new MinStack(); * obj->push(x); * obj->pop(); * int param_3 = obj->top(); * int param_4 = obj->getMin(); */
Learned:
1; minStack中,重复的最小值也要存。2:即使Stack<Integer>的返回值是一个对象,因此要用.equals()来比较大小
No comments:
Post a Comment