Given two sequences pushed
and popped
with distinct values, return true
if and only if this could have been the result of a sequence of push and pop operations on an initially empty stack.
Example 1:
Input: pushed = [1,2,3,4,5], popped = [4,5,3,2,1] Output: true Explanation: We might do the following sequence: push(1), push(2), push(3), push(4), pop() -> 4, push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1
Example 2:
Input: pushed = [1,2,3,4,5], popped = [4,3,5,1,2] Output: false Explanation: 1 cannot be popped before 2.
Constraints:
0 <= pushed.length == popped.length <= 1000
0 <= pushed[i], popped[i] < 1000
pushed
is a permutation ofpopped
.pushed
andpopped
have distinct values.
A:
Just simulate the process on generating the popped result.
每次要想pop一个值。 需要操作stack来完成。
class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
stack<int> SS;
int start = 0;
for(auto val : popped){
while(start< popped.size() && (SS.empty() || SS.top() != val)){
SS.push(pushed[start++]);
}
if(SS.empty() || SS.top() != val){
return false;
}
SS.pop();
}
return true;
}
};
------------第二遍-------------------反而退步了----这个set是不需要的。并不需要检查head是否为下一个pop的,不是就继续存即可-----
class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
stack<int> S;
unordered_set<int> mySet;
int idx = -1, n = pushed.size(); // index for pushed
// search each popped, and then see if we can make it pushed
for(auto val : popped){
while(idx < n && (mySet.find(val) == mySet.end())){
S.push(pushed[++idx]);
mySet.insert(pushed[idx]);
}
// now, we find it on the top of the stack
if(!S.empty() && S.top()==val){// no need to check empty actually
S.pop();
}else{
return false;
}
}
return true;
}
};
No comments:
Post a Comment