You have d
dice, and each die has f
faces numbered 1, 2, ..., f
.
Return the number of possible ways (out of fd
total ways) modulo 10^9 + 7
to roll the dice so the sum of the face up numbers equals target
.
Example 1:
Input: d = 1, f = 6, target = 3 Output: 1 Explanation: You throw one die with 6 faces. There is only one way to get a sum of 3.
Example 2:
Input: d = 2, f = 6, target = 7 Output: 6 Explanation: You throw two dice, each with 6 faces. There are 6 ways to get a sum of 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1.
Example 3:
Input: d = 2, f = 5, target = 10 Output: 1 Explanation: You throw two dice, each with 5 faces. There is only one way to get a sum of 10: 5+5.
Example 4:
Input: d = 1, f = 2, target = 3 Output: 0 Explanation: You throw one die with 2 faces. There is no way to get a sum of 3.
Example 5:
Input: d = 30, f = 30, target = 500 Output: 222616187 Explanation: The answer must be returned modulo 10^9 + 7.
Constraints:
1 <= d, f <= 30
1 <= target <= 1000
A:
就是backtrack with memorization.
class Solution { public: int numRollsToTarget(int d, int f, int target) { vector<unordered_map<int, int>> V(d+1,unordered_map<int,int>()); return helper(d,f,target, V); } private: const int modulo = pow(10,9)+7; int helper(int d, int f, int target,vector<unordered_map<int, int>>& V){ if(V[d].find(target) != V[d].end()){ return V[d][target]; } if(d==1){ if(target <=0 || target >f) return 0; return 1; } int res = 0; for(int val = 1; val<=f;val++){ res += helper(d-1, f, target-val,V); res %= modulo; } V[d][target] = res; return V[d][target]; } };
Mistakes:
res %= modulo 我一开始写道了for{}外边,结果f 大的时候, 会造成overflow
No comments:
Post a Comment