You are given an array prices
where prices[i]
is the price of a given stock on the ith
day.
You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.
Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0
.
Example 1:
Input: prices = [7,1,5,3,6,4] Output: 5 Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
Example 2:
Input: prices = [7,6,4,3,1] Output: 0 Explanation: In this case, no transactions are done and the max profit = 0.
Constraints:
1 <= prices.length <= 105
0 <= prices[i] <= 104
A:
------------------3 rd pass -----------------
--就是很简单的一遍过即可---------不知道为什么,当时非要那么麻烦-----------------------------------------
class Solution {public:int maxProfit(vector<int>& prices) {int res = 0;int minBefore = prices[0];for(int i = 1; i<prices.size(); i++){res = max(res, prices[i] - minBefore);minBefore = min(minBefore, prices[i]);}return res;}};
就是CLRS上的,divide and conquer 问题。
第一遍做的,有点儿问题。( 虽然也pass了)
例如: 上来直接设 leftMax =0 是不对的。 有可能很小。 因为,对于cross的, 就是假定了, 左右,都必须含有。因此,需要先设为: 负无穷 ( CLRS上也是这样的)
public class Solution { public int maxProfit(int[] prices) { if(prices!= null && prices.length<=1){ return 0; } int[] change = new int[prices.length]; for(int i =0; i<prices.length-1;i++){ change[i] = prices[i+1] - prices[i]; } return maxChange(change, 0 ,change.length-1); } //divide and conquers problem. public int maxChange(int[] change, int start, int end){ if(start==end){ return change[start]; } else{ int middle = (int)((start+end)/2); int leftMax = maxChange(change, start,middle); int rightMax = maxChange(change, middle+1, end); int crossMax = maxCross(change,start,middle,end); int maxProfit = (leftMax>rightMax)?leftMax:rightMax; if(crossMax > maxProfit){ maxProfit = crossMax; } return maxProfit; } } private int maxCross(int[] change, int start, int middle, int end){ //get max left part int leftMax = 0; int sum=0; for(int i =middle; i>=start; i--){ sum += change[i]; if(sum>leftMax){ leftMax = sum; } } int rightMax = 0; sum = 0; for(int i =middle+1; i<=end; i++){ sum +=change[i]; if(sum>rightMax){ rightMax=sum; } } return leftMax + rightMax; } }
No comments:
Post a Comment