Sunday, September 22, 2013

64. Minimum Path Sum --- M

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

 

Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

A:
就是简单的DP 问题。 从top-left开始,计算,到bottom-right 截止
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> V(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) {
V[0][0] = grid[0][0];
continue;
}
auto left = j - 1 >= 0 ? V[i][j - 1] : INT_MAX;
auto up = i - 1 >= 0 ? V[i - 1][j] : INT_MAX;
V[i][j] = grid[i][j] + min(left, up);
}
}
return V[m - 1][n - 1];
}
};
Mistakes:
1: 计算最下面一行和最右边一列的时候,不是简单的copy而应该是到右下角点的sum的值。


---------------------------第二遍----------直接在数组上修改-----------------
思路:刚开始扫描第一行和第一列
然后,每次再扫描并计算 剩下的grid的第一行和第一列。 分别update 节点的值。
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
for(int i = 0; i<m; i++){
for(int j = 0; j<n; j++){
if(i==0 && j == 0){
continue;
}
int left = j -1 >=0 ? grid[i][j-1]: INT_MAX;
int up = i -1 >=0 ? grid[i-1][j] : INT_MAX;
grid[i][j] += min(left, up);
}
}
return grid[m-1][n-1];
}
};






No comments:

Post a Comment