Given a m x n
grid
filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]] Output: 7 Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]] Output: 12
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
A:
就是简单的DP 问题。 从top-left开始,计算,到bottom-right 截止
Mistakes:class Solution {public:int minPathSum(vector<vector<int>>& grid) {int m = grid.size(), n = grid[0].size();vector<vector<int>> V(m, vector<int>(n, 0));for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (i == 0 && j == 0) {V[0][0] = grid[0][0];continue;}auto left = j - 1 >= 0 ? V[i][j - 1] : INT_MAX;auto up = i - 1 >= 0 ? V[i - 1][j] : INT_MAX;V[i][j] = grid[i][j] + min(left, up);}}return V[m - 1][n - 1];}};
1: 计算最下面一行和最右边一列的时候,不是简单的copy而应该是到右下角点的sum的值。
---------------------------第二遍----------直接在数组上修改-----------------
思路:刚开始扫描第一行和第一列
然后,每次再扫描并计算 剩下的grid的第一行和第一列。 分别update 节点的值。
class Solution {public:int minPathSum(vector<vector<int>>& grid) {int m = grid.size(), n = grid[0].size();for(int i = 0; i<m; i++){for(int j = 0; j<n; j++){if(i==0 && j == 0){continue;}int left = j -1 >=0 ? grid[i][j-1]: INT_MAX;int up = i -1 >=0 ? grid[i-1][j] : INT_MAX;grid[i][j] += min(left, up);}}return grid[m-1][n-1];}};
No comments:
Post a Comment