Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
A:
递归调用 方法,
public class UniqueBinarySearchTrees { public int numTrees(int n) { // DP method if (n == 0 || n == 1) return 1; if (n == 2) return 2; int sum = 0; for (int i = 1; i <= n; i++) { // choose i as the root. sum = sum + (numTrees(i - 1) * numTrees(n - i)); } return sum; } }---------------------------------------------第二遍-------------------------------
这次是真正的DP
class Solution { public: int numTrees(int n) { vector<int> A(n+1,0); A[0]=1; for(int i = 1; i<n+1;++i) for(int rootVal =1; rootVal <=i ; ++rootVal) A[i] += A[rootVal-1] * A[i-rootVal]; return A[n]; } };
Mistakes:
1: 注意,左右两边,是相乘的关系,(乘法原理)
No comments:
Post a Comment