Given an array of n
integers nums
and an integer target
, find the number of index triplets i
, j
, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
Follow up: Could you solve it in O(n2)
runtime?
Example 1:
Input: nums = [-2,0,1,3], target = 2 Output: 2 Explanation: Because there are two triplets which sums are less than 2: [-2,0,1] [-2,0,3]
Example 2:
Input: nums = [], target = 0 Output: 0
Example 3:
Input: nums = [0], target = 0 Output: 0
Constraints:
n == nums.length
0 <= n <= 300
-100 <= nums[i] <= 100
-100 <= target <= 100
思路很直观,就是 two pointer techniques
内层要计算的时候, 每次考虑的是: 前一个固定,一共有多少个合适的。
class Solution { public: int threeSumSmaller(vector<int>& nums, int target) { int n = nums.size(); sort(nums.begin(), nums.end()); int res = 0; for(int i =0;i<n-2;i++){ int k = n-1; // increase k would get smaller for(int j = i+1;j<k;j++ ){ while(k > j && nums[i] + nums[j] + nums[k] >= target){ //k is strictly decreasing k--; } res += k-j; } } return res; } };
Mistakes:
No comments:
Post a Comment