Q:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at (0,0), (0,4), and (2,2):
1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
The point (0,2)
is an ideal meeting point, as the total travel
distance of 2+2+2=6
is minimal. So return 6.
A:
就是单独的计算横纵坐标的中间位置啊?注意,这里是median, 不是middle
public int minTotalDistance(int[][] grid) {
if(grid==null || grid.length==0|| grid[0].length==0)
return 0;
int m = grid.length, n = grid[0].length;
List<Integer> X = new LinkedList<Integer>();
List<Integer> Y = new LinkedList<Integer>();
double sumX=0, sumY =0;
for(int i =0;i< m;i++) {
for (int j = 0; j < n; j++) {
if(grid[i][j] == 1){
X.add(i);
Y.add(j);
sumX += i;
sumY += j;
}
}
}
int medianX = X.get(X.size()/2);
Collections.sort(Y);
int medianY = Y.get(Y.size()/2);
int res = 0;
for(Integer x : X)
res += Math.abs( x - medianX );
for(Integer y : Y)
res += Math.abs( y - medianY);
return res;
}
Mistakes:
1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
(0,2)
is an ideal meeting point, as the total traveldistance of
2+2+2=6
is minimal. So return 6.public int minTotalDistance(int[][] grid) { if(grid==null || grid.length==0|| grid[0].length==0) return 0; int m = grid.length, n = grid[0].length; List<Integer> X = new LinkedList<Integer>(); List<Integer> Y = new LinkedList<Integer>(); double sumX=0, sumY =0; for(int i =0;i< m;i++) { for (int j = 0; j < n; j++) { if(grid[i][j] == 1){ X.add(i); Y.add(j); sumX += i; sumY += j; } } } int medianX = X.get(X.size()/2); Collections.sort(Y); int medianY = Y.get(Y.size()/2); int res = 0; for(Integer x : X) res += Math.abs( x - medianX ); for(Integer y : Y) res += Math.abs( y - medianY); return res; }
Mistakes:
No comments:
Post a Comment