There are n
cities numbered from 0
to n-1
. Given the array edges
where edges[i] = [fromi, toi, weighti]
represents a bidirectional and weighted edge between cities fromi
and toi
, and given the integer distanceThreshold
.
Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold
, If there are multiple such cities, return the city with the greatest number.
Notice that the distance of a path connecting cities i and j is equal to the sum of the edges' weights along that path.
Example 1:
Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4 Output: 3 Explanation: The figure above describes the graph. The neighboring cities at a distanceThreshold = 4 for each city are: City 0 -> [City 1, City 2] City 1 -> [City 0, City 2, City 3] City 2 -> [City 0, City 1, City 3] City 3 -> [City 1, City 2] Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.
Example 2:
Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2 Output: 0 Explanation: The figure above describes the graph. The neighboring cities at a distanceThreshold = 2 for each city are: City 0 -> [City 1] City 1 -> [City 0, City 4] City 2 -> [City 3, City 4] City 3 -> [City 2, City 4] City 4 -> [City 1, City 2, City 3] The city 0 has 1 neighboring city at a distanceThreshold = 2.
Constraints:
2 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti, distanceThreshold <= 10^4
- All pairs
(fromi, toi)
are distinct.
A:
思想类似于 Floyd Warshall
我自己的思路是:
每次从vertex 开始做 BFS, 找到新的path cost更小的点,作为下一步的追踪可能。
class Solution { public: int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) { vector<vector<int>> V(n, vector<int>(n, INT_MAX)); vector<vector<int>> M(n, vector<int>()); // M[i] = {neighbors} vector<int> NeighborCount(n,INT_MAX); for (auto edge : edges) { int a = edge[0], b = edge[1], w = edge[2]; V[a][b] = w; V[b][a] = w; if (w <= distanceThreshold) { M[a].push_back(b); M[b].push_back(a); } } // mark every points as 0 to itself for (int i = 0; i < n; i++) V[i][i] = 0; for (int i = 0; i < n; i++) { //bfs auto curlayer = M[i]; while (not curlayer.empty()) { vector<int> nextlayer; for (auto end : curlayer) { if (V[i][end] <= distanceThreshold) { for (auto newEnd : M[end]) { int newDistance = V[i][end] + V[end][newEnd]; if (newDistance <= distanceThreshold && newDistance < V[i][newEnd]) { V[i][newEnd] = newDistance; nextlayer.push_back(newEnd); M[i].push_back(newEnd); } } } } curlayer = nextlayer; } unordered_set<int> tmp(M[i].begin(), M[i].end()); // remove duplicate NeighborCount[i] = tmp.size(); } int minNeighborSize = *min_element(NeighborCount.begin(), NeighborCount.end()); for (int i = n - 1; i >= 0; i--) { if (NeighborCount[i] == minNeighborSize) return i; } return -1; } };
Errors:
1: 没有set V[i][i] =0; 导致了多加了一些
2: M[i] 一开始为了避免重复, 用了set, 然而iterator的时候很麻烦,我就改成了vector,可是后来忘记了去重。
真正的Floy Warshal
class Solution { public: int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) { vector<vector<int>> dp(n,vector<int>(n,INT_MAX/2)); for(auto& x:edges){ dp[x[0]][x[1]]=x[2]; dp[x[1]][x[0]]=x[2]; } for(int i=0;i<n;i++){ for(int j=0;j<n;j++){ for(int k=0;k<n;k++){ dp[j][k]=min(dp[j][k],dp[j][i]+dp[i][k]); } } } int ans=-1; int cur=INT_MAX; for(int i=0;i<n;i++){ int count=0; for(int j=0;j<n;j++){ if(j!=i && dp[i][j]<=distanceThreshold){ count++; } } if(count<=cur){ cur=count; ans=i; } } return ans; } };
No comments:
Post a Comment